PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages. Academic Article uri icon

Overview

abstract

  • AIMS: Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been shown to influence macrophage biology and modulate atherogenesis. We conducted this study to examine the regulation of scavenger receptors (SRs) (LOX-1, SRA, and CD36) and oxidized liporoptein cholesterol (ox-LDL) uptake in macrophages by PCSK9. METHODS AND RESULTS: Treatment of mouse peritoneal macrophages with tumour necrosis factor alpha (TNF-α) resulted in concentration-dependent modest, but significant, increase in PCSK9 expression. Importantly, treatment of TNF-α primed macrophages with recombinant murine PCSK9 increased the expression of LOX-1, SRA, and CD36 2-5 fold, and enhanced ox-LDL uptake by ≈five-fold. The increase in LOX-1 was much greater than in SRA or CD36. PCSK9 inhibition (by siRNA transfection or use of macrophages from PCSK9-/- mice) reduced the expression of SRs (LOX-1 ≫ SRA or CD36). Ox-LDL uptake in response to PCSK9 was also inhibited in macrophages from LOX-1-/- mice (P < 0.05 vs. macrophages from SRA-/- and CD36-/- mice). Upregulation of PCSK9 by cDNA transfection induced intense ox-LDL uptake which was inhibited by co-transfection of cells with siRNA LOX-1 (P < 0.05 vs. siRNA SRA or siRNA CD36). Further, TNF-α-mediated PCSK9 upregulation and subsequent expression of SRs and ox-LDL uptake were reduced in macrophages from gp91phox-/-, p47phox-/- and p22phox-/- mice (vs. macrophages from wild-type mice). CONCLUSIONS: This study shows that in an inflammatory milieu, elevated levels of PCSK9 potently stimulate the expression of SRs (principally LOX-1) and ox-LDL uptake in macrophages, and thus contribute to the process of atherogenesis.

publication date

  • July 1, 2018

Research

keywords

  • Atherosclerosis
  • Lipoproteins, LDL
  • Macrophages, Peritoneal
  • Proprotein Convertase 9
  • Scavenger Receptors, Class E

Identity

Scopus Document Identifier

  • 85050925709

Digital Object Identifier (DOI)

  • 10.1093/cvr/cvy079

PubMed ID

  • 29617722

Additional Document Info

volume

  • 114

issue

  • 8