An In Vivo Murine Sciatic Nerve Model of Perineural Invasion. Academic Article uri icon

Overview

abstract

  • Cancer cells invade nerves through a process termed perineural invasion (PNI), in which cancer cells proliferate and migrate in the nerve microenvironment. This type of invasion is exhibited by a variety of cancer types, and very frequently is found in pancreatic cancer. The microscopic size of nerve fibers within mouse pancreas renders the study of PNI difficult in orthotopic murine models. Here, we describe a heterotopic in vivo model of PNI, where we inject syngeneic pancreatic cancer cell line Panc02-H7 into the murine sciatic nerve. In this model, sciatic nerves of anesthetized mice are exposed and injected with cancer cells. The cancer cells invade in the nerves proximally toward the spinal cord from the point of injection. The invaded sciatic nerves are then extracted and processed with OCT for frozen sectioning. H&E and immunofluorescence staining of these sections allow quantification of both the degree of invasion and changes in protein expression. This model can be applied to a variety of studies on PNI given its versatility. Using mice with different genetic modifications and/or different types of cancer cells allows for investigation of the cellular and molecular mechanisms of PNI and for different cancer types. Furthermore, the effects of therapeutic agents on nerve invasion can be studied by applying treatment to these mice.

publication date

  • April 23, 2018

Research

keywords

  • Adenocarcinoma
  • Nerve Tissue
  • Pancreatic Neoplasms
  • Peripheral Nerves
  • Sciatic Nerve

Identity

PubMed Central ID

  • PMC5965264

Scopus Document Identifier

  • 85046692972

Digital Object Identifier (DOI)

  • 10.3791/56857

PubMed ID

  • 29733315

Additional Document Info

issue

  • 134