Harnessing post-translational modifications for next-generation HIV immunogens. Review uri icon

Overview

abstract

  • The extensive post-translational modifications of the envelope spikes of the human immunodeficiency virus (HIV) present considerable challenges and opportunities for HIV vaccine design. These oligomeric glycoproteins typically have over 30 disulfide bonds and around a 100 N-linked glycosylation sites, and are functionally dependent on protease cleavage within the secretory system. The resulting mature structure adopts a compact fold with the vast majority of its surface obscured by a protective shield of glycans which can be targeted by broadly neutralizing antibodies (bnAbs). Despite the notorious heterogeneity of glycosylation, rare B-cell lineages can evolve to utilize and cope with viral glycan diversity, and these structures therefore present promising targets for vaccine design. The latest generation of recombinant envelope spike mimetics contains re-engineered post-translational modifications to present stable antigens to guide the development of bnAbs by vaccination.

publication date

  • May 21, 2018

Research

keywords

  • AIDS Vaccines
  • HIV
  • Protein Processing, Post-Translational

Identity

PubMed Central ID

  • PMC6013407

Scopus Document Identifier

  • 85048949035

Digital Object Identifier (DOI)

  • 10.1042/BST20170394

PubMed ID

  • 29784645

Additional Document Info

volume

  • 46

issue

  • 3