Inhibition of ubiquitin-dependent proteolysis by non-ubiquitinatable proteins.
Academic Article
Overview
abstract
The effect in reticulocyte lysates of proteins with blocked amino groups on the ATP-dependent degradation of casein and serum albumin was studied in order to assess the extent to which proteins with blocked and with free amino groups share common paths of proteolytic degradation. Completely acetylated or succinylated casein and acetylated or succinylated serum albumin (reduced and carboxymethylated), in addition to other amino-modified proteins, inhibited the ATP-dependent proteolysis of both casein and reduced carboxymethylated serum albumin. Inhibition of serum albumin degradation by acetylated serum albumin was competitive, whereas inhibition of casein degradation by acetylated casein was largely competitive with evidence of mixed kinetics. The different amino-blocked proteins studied, which were largely unfolded under assay conditions, were similarly effective as inhibitors on a weight basis, with Ki values in the range 0.2-0.6 mg/ml; there was no correlation between the ability of the blocked proteins to serve as proteolysis substrates and their effectiveness as inhibitors. Studies of the effects of acetylated proteins on the conjugation of ubiquitin to serum albumin and casein demonstrated that the acetylated proteins blocked formation of ubiquitin-albumin conjugates and of selected casein conjugates; the steady state concentration of selected conjugates of endogenous lysate proteins was increased in the presence of amino-blocked proteins. The results suggest that proteins with blocked amino groups, which cannot serve as substrates for ubiquitin conjugation, can compete for binding to those ubiquitin conjugation factors that recognize and ubiquitinate potential substrates of the ubiquitin pathway. The similar inhibitory properties of the different blocked proteins in turn suggest that a common factor in binding to these conjugation factors may be recognition of the polypeptide backbone.