Renal hemodynamic and natriuretic effects of atrial natriuretic factor.
Review
Overview
abstract
In this article we review the renal hemodynamic and excretory actions of atrial natriuretic factor (ANF) and consider some of the mechanisms of its vascular and natriuretic effects. ANF leads to a marked, sustained, and parallel increase in whole-organ and superficial single-nephron glomerular filtration rate (GFR) while mean blood pressure is decreased and renal blood flow (RBF) is unchanged or even decreased. The increase in GFR is caused by an efferent arteriolar vasoconstriction or by a combination of afferent vasodilation and efferent vasoconstriction. ANF also leads to a decrease in the hypertonicity of the innermedullary interstitium. Together with the increase in GFR, this phenomenon accounts wholly or in great part for the ANF-induced natriuresis. The overall renal vascular effects of ANF are complex and may tentatively be conceptualized as a behavior of a functional partial agonist: slight vasoconstriction in vasodilated kidneys, no sustained effects on the vascular resistance in normal kidneys, and vasodilation in vasoconstricted kidneys. The vasoconstrictor effect of ANF may be direct or indirect and depends on extracellular calcium whereas the antagonist effect likely results from alterations in intracellular calcium homeostasis. The data raise the perspective that ANF is not only a powerful natriuretic substance but has the potential of being an important modulator of GFR and RBF in intact animals.