Splicing modulation sensitizes chronic lymphocytic leukemia cells to venetoclax by remodeling mitochondrial apoptotic dependencies. Academic Article uri icon

Overview

abstract

  • The identification of targetable vulnerabilities in the context of therapeutic resistance is a key challenge in cancer treatment. We detected pervasive aberrant splicing as a characteristic feature of chronic lymphocytic leukemia (CLL), irrespective of splicing factor mutation status, which was associated with sensitivity to the spliceosome modulator, E7107. Splicing modulation affected CLL survival pathways, including members of the B cell lymphoma-2 (BCL2) family of proteins, remodeling antiapoptotic dependencies of human and murine CLL cells. E7107 treatment decreased myeloid cell leukemia-1 (MCL1) dependence and increased BCL2 dependence, sensitizing primary human CLL cells and venetoclax-resistant CLL-like cells from an Eμ-TCL1-based adoptive transfer murine model to treatment with the BCL2 inhibitor venetoclax. Our data provide preclinical rationale to support the combination of venetoclax with splicing modulators to reprogram apoptotic dependencies in CLL for treating venetoclax-resistant CLL cases.

authors

  • ten Hacken, Elisa
  • Valentin, Rebecca
  • Regis, Fara Faye D
  • Sun, Jing
  • Yin, Shanye
  • Werner, Lillian
  • Deng, Jing
  • Gruber, Michaela
  • Wong, Jessica
  • Zheng, Mei
  • Gill, Amy L
  • Seiler, Michael
  • Smith, Peter
  • Thomas, Michael
  • Buonamici, Silvia
  • Ghia, Emanuela M
  • Kim, Ekaterina
  • Rassenti, Laura Z
  • Burger, Jan A
  • Kipps, Thomas J
  • Meyerson, Matthew L
  • Bachireddy, Pavan
  • Wang, Lili
  • Reed, Robin
  • Neuberg, Donna
  • Carrasco, Ruben D
  • Brooks, Angela N
  • Letai, Anthony
  • Davids, Matthew S
  • Wu, Catherine J

publication date

  • October 4, 2018

Research

keywords

  • Alternative Splicing
  • Antineoplastic Combined Chemotherapy Protocols
  • Bridged Bicyclo Compounds, Heterocyclic
  • Epoxy Compounds
  • Leukemia, Lymphocytic, Chronic, B-Cell
  • Macrolides
  • Sulfonamides

Identity

PubMed Central ID

  • PMC6237462

Scopus Document Identifier

  • 85063243365

Digital Object Identifier (DOI)

  • 10.1021/cb500340w

PubMed ID

  • 30282833

Additional Document Info

volume

  • 3

issue

  • 19