Electrocardiogram-guided Technique: An Alternative Method for Confirming Central Venous Catheter Tip Placement. Academic Article uri icon

Overview

abstract

  • BACKGROUND: The current standard followed for assessing central venous catheter (CVC) tip placement location is through radiological confirmation using chest X-ray (CXR). Placement of CVCs under electrocardiogram (ECG) guidance may save cost and time compared to CXR. OBJECTIVE: The objective of this study is to compare the accurate placement of the CVC tip using anatomical landmark technique with ECG-guided technique. Another objective is to compare CVC placement time and postprocedural complications between the two techniques. METHODS AND MATERIALS: A total of 144 adult individuals, who were critically ill and required CVC placement in the Emergency Department, were included for the study. Study duration was 6 months. Anatomical landmark and ECG-guided groups were assigned 72 participants each. Analyses were performed using t and Chi square-tests. RESULTS: It was observed that 13 (18%) in the landmark technique were malpositioned as compared to none in the ECG-guided technique (P = 0.000). The landmark group had 22 (30.6%) participants with arrhythmias during the procedure, compared to none in the ECG-guided group (P = 0.000). The landmark group revealed that 30 (41.7%) of the CVC were overinserted and required immediate repositioning, compared to none in the ECG-guided group (P = 0.000). CONCLUSION: ECG-guided technique was found to be more accurate for CVC tip placement than the anatomical landmark technique. Furthermore, the ECG-guided technique was more time-effective and had less complications than the anatomical landmark technique. Hence, ECG-guided CVC placement is relatively accurate, efficient, and safe and can be considered as an alternative method to conventional radiography for confirmation of CVC tip placement.

publication date

  • January 1, 2018

Identity

PubMed Central ID

  • PMC6262658

Scopus Document Identifier

  • 85058312624

Digital Object Identifier (DOI)

  • 10.4103/JETS.JETS_122_17

PubMed ID

  • 30568370

Additional Document Info

volume

  • 11

issue

  • 4