Evaluation of diffusion kurtosis imaging in stratification of nonalcoholic fatty liver disease and early diagnosis of nonalcoholic steatohepatitis in a rabbit model.
Academic Article
Overview
abstract
PURPOSE: To examine the feasibility of MR diffusion kurtosis imaging (DKI) for characterizing nonalcoholic fatty liver disease (NAFLD) and diagnosing nonalcoholic steatohepatitis (NASH). METHODS: Thirty-two rabbits on high fat diet with different severities of NAFLD were imaged at 3 T MR including diffusion weighted imaging (DWI) and DKI using b values of 0, 400, 800 s/mm2 with 15 diffusion directions at each b value. Apparent diffusion coefficient (ADC) was derived from the linear exponential DWI model. Mean diffusion (MD) and mean kurtosis (MK) were derived from the quadratic exponential model of DKI. Correlations between MR parameters and hepatic pathology determined by the NAFLD activity scoring system were analyzed by Spearman rank correlation analysis. Receiver operating characteristic analyses were applied to determine the cutoff values of MD, MK as well as ADC in distinguishing NASH from non-NASH. The diagnostic efficacies of MD and MK in detecting NASH were compared with that of ADC. RESULTS: Values for ADC and MD significantly decreased as the severity of NAFLD increased (ρ = -0.529, -0.904, respectively; P < 0.05). MK values significantly increased as the severity of NAFLD increased (ρ = 0.761; P < 0.05). In addition, both MD and MK values were significantly different between borderline NASH and NASH groups (MD: 1.729 ± 0.144 vs. 1.458 ± 0.240[×10-3 mm2/s]; MK: 1.096 ± 0.079 vs. 1.237 ± 0.180; P < 0.05). Moreover, there was a significantly higher area under the curve (AUC) for both MD (0.955) and MK (0.905), as compared to ADC (0.736). CONCLUSION: Diffusion kurtosis imaging was feasible for stratifying NAFLD, and more accurately discriminated NASH from non-NASH when compared with DWI.