Cluster analysis of time evolution (CAT) for quantitative susceptibility mapping (QSM) and quantitative blood oxygen level-dependent magnitude (qBOLD)-based oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2 ) mapping. Academic Article uri icon

Overview

abstract

  • PURPOSE: To improve the accuracy of QSM plus quantitative blood oxygen level-dependent magnitude (QSM + qBOLD or QQ)-based mapping of the oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2 ) using cluster analysis of time evolution (CAT). METHODS: 3D multi-echo gradient echo and arterial spin labeling images were acquired in 11 healthy subjects and 5 ischemic stroke patients. DWI was also carried out on patients. CAT was developed for analyzing signal evolution over TE. QQ-based OEF and CMRO2 were reconstructed with and without CAT, and results were compared using region of interest analysis and a paired t-test. RESULTS: Simulations demonstrated that CAT substantially reduced noise error in QQ-based OEF. In healthy subjects, QQ-based OEF appeared less noisy and more uniform with CAT than without CAT; average OEF with and without CAT in cortical gray matter was 32.7 ± 4.0% and 37.9 ± 4.5%, with corresponding CMRO2 of 148.4 ± 23.8 and 171.4 ± 22.4 μmol/100 g/min, respectively. In patients, regions of low OEF were confined within the ischemic lesions defined on DWI when using CAT, which was not observed without CAT. CONCLUSION: The cluster analysis of time evolution (CAT) significantly improves the robustness of QQ-based OEF against noise.

publication date

  • September 10, 2019

Research

keywords

  • Brain
  • Brain Mapping
  • Gray Matter
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging
  • Oxygen
  • Stroke

Identity

PubMed Central ID

  • PMC6879790

Scopus Document Identifier

  • 85072212252

Digital Object Identifier (DOI)

  • 10.1002/mrm.27967

PubMed ID

  • 31502723

Additional Document Info

volume

  • 83

issue

  • 3