Robots in the Operating Room During Hip and Knee Arthroplasty.
Review
Overview
abstract
-
PURPOSE OF THE REVIEW: The utilization of technology has increased over the last decade across all surgical specialties. Robotic-assisted surgery, among the most advanced surgical technology, applied to hip and knee arthroplasty has experienced rapid growth in utilization, surgical applications, and robotic platforms. The goal of this study is to provide a comprehensive review of the most commonly utilized robotic platforms for hip and knee arthroplasty and the most up to date literature on the benefits and limitations of robotic arthroplasty. RECENT FINDINGS: Studies consistently demonstrate that that robotic-assisted surgery during total hip arthroplasty (THA), total knee arthroplasty (TKA), and unicompartmental knee arthroplasty (UKA) improves component position and alignment. There is also growing evidence that robotic-assisted UKA improves clinical outcomes and implant survivorship and, therefore, may be cost-effective. However, there remains to be convincing evidence that robotic-assisted arthroplasty improves clinical outcome measures or reduces revision rates for THA and TKA. Potential disadvantages of robotic arthroplasty remain, including a learning curve, potential for additional radiation exposure preoperatively, and the financial costs. Robotic hip and knee arthroplasty remains attactive as studies show that it consistently improves implant position and alignment over conventional techniques. There is growing evidence that robotic UKA may improve patient outcomes and reduce revision rates, but further study is needed. In addition, further and longer-term studies are needed to determine if improved component position and alignment in TKA and THA leads to improved clinical outcomes and reduced revision rates.
publication date
published in