Interbody Fusions in the Lumbar Spine: A Review. Review uri icon

Overview

abstract

  • BACKGROUND: Lumbar interbody fusion is among the most common types of spinal surgery performed. Over time, the term has evolved to encompass a number of different approaches to the intervertebral space, as well as differing implant materials. Questions remain over which approaches and materials are best for achieving fusion and restoring disc height. QUESTIONS/PURPOSES: We reviewed the literature on the advantages and disadvantages of various methods and devices used to achieve and augment fusion between the disc spaces in the lumbar spine. METHODS: Using search terms specific to lumbar interbody fusion, we searched PubMed and Google Scholar and identified 4993 articles. We excluded those that did not report clinical outcomes, involved cervical interbody devices, were animal studies, or were not in English. After exclusions, 68 articles were included for review. RESULTS: Posterior approaches have advantages, such as providing 360° support through a single incision, but can result in retraction injury and do not always restore lordosis or correct deformity. Anterior approaches allow for the largest implants and good correction of deformities but can result in vascular, urinary, psoas muscle, or lumbar plexus injury and may require a second posterior procedure to supplement fixation. Titanium cages produce improved osteointegration and fusion rates but also increase subsidence caused by the stiffness of titanium relative to bone. Polyetheretherketone (PEEK) has an elasticity closer to that of bone and shows less subsidence than titanium cages, but as an inert compound PEEK results in lower fusion rates and greater osteolysis. Combination PEEK-titanium coating has not yet achieved better results. Expandable cages were developed to increase disc height and restore lumbar lordosis, but the data on their effectiveness have been inconclusive. Three-dimensionally (3D)-printed cages have shown promise in biomechanical and animal studies at increasing fusion rates and reducing subsidence, but additive manufacturing options are still in their infancy and require more investigation. CONCLUSIONS: All of the approaches to spinal fusion have plusses and minuses that must be considered when determining which to use, and newer-technology implants, such as PEEK with titanium coating, expandable, and 3D-printed cages, have tried to improve upon the limitations of existing grafts but require further study.

publication date

  • January 13, 2020

Identity

PubMed Central ID

  • PMC7253570

Scopus Document Identifier

  • 85078262107

Digital Object Identifier (DOI)

  • 10.1007/s11420-019-09737-4

PubMed ID

  • 32523484

Additional Document Info

volume

  • 16

issue

  • 2