TREX1 is a checkpoint for innate immune sensing of DNA damage that fosters cancer immune resistance. Academic Article uri icon

Overview

abstract

  • Genomic instability is a hallmark of neoplastic transformation that leads to the accumulation of mutations, and generates a state of replicative stress in neoplastic cells associated with dysregulated DNA damage repair (DDR) responses. The importance of increasing mutations in driving cancer progression is well established, whereas relatively little attention has been devoted to the DNA displaced to the cytosol of cancer cells, a byproduct of genomic instability and of the ensuing DDR response. The presence of DNA in the cytosol promotes the activation of viral defense pathways in all cells, leading to activation of innate and adaptive immune responses. In fact, the improper accumulation of cytosolic DNA in normal cells is known to drive severe autoimmune pathology. Thus, cancer cells must evade cytoplasmic DNA detection pathways to avoid immune-mediated destruction. The main sensor for cytoplasmic DNA is the cyclic GMP-AMP synthase, cGAS. Upon activation by cytosolic DNA, cGAS catalyzes the formation of the second messenger cGAMP, which activates STING (stimulator of IFN genes), leading to the production of type I interferon (IFN-I). IFN-I is a critical effector of cell-mediated antiviral and antitumor immunity, and its production by cancer cells can be subverted by several mechanisms. However, the key upstream regulator of cytosolic DNA-mediated immune stimulation is the DNA exonuclease 3'-repair exonuclease 1 (TREX1). Here, we will discuss evidence in support of a role of TREX1 as an immune checkpoint that, when up-regulated, hinders the development of antitumor immune responses.

publication date

  • December 12, 2017

Identity

Scopus Document Identifier

  • 85096119225

Digital Object Identifier (DOI)

  • 10.1042/ETLS20170063

PubMed ID

  • 33525799

Additional Document Info

volume

  • 1

issue

  • 5