Nanopattern multi-well avalanche selenium detector for TOF-PET.
Academic Article
Overview
abstract
-
For the first time, we propose using amorphous selenium (a-Se) as the photoconductive material for time-of-flight (TOF) detectors. Advantages of avalanche-modea-Se are having high fill factor, low excess noise due to unipolar photoconductive gain, band transport in extended states with the highest possible mobility, and negligible trapping. The major drawback ofa-Se is its poor single-photon time resolution and low carrier mobility due to shallow-traps, problems that must be circumvented for TOF applications. We propose a nanopattern multi-wella-Se detector (MWSD) to enable both impact ionization avalanche gain and unipolar time-differential (UTD) charge sensing in one device. Our experimental results show that UTD charge sensing in avalanche-modea-Se improves time-resolution by nearly 4 orders-of-magnitude. In addition, we used Cramér-Rao lower bound analysis and Monte Carlo simulations to demonstrate the viability of our MWSD for low statistics photon imaging modalities such as PET despite it being a linear-mode device. Based on our results, our device may achieve 100 ps coincidence time resolution in TOF PET with a material that is low cost and uniformly scalable to large area.
publication date
published in
Research
keywords
Identity
Scopus Document Identifier
Digital Object Identifier (DOI)
PubMed ID
Additional Document Info
has global citation frequency
volume
issue