Pseudo-Wellens syndrome from sepsis-induced cardiomyopathy: a case report and review of the literature. Review uri icon

Overview

abstract

  • BACKGROUND: Pseudo-Wellens syndrome is a rare entity characterized by the presence of electrocardiogram (ECG) changes of Wellens syndrome but without the stenosis of the left anterior descending (LAD) coronary artery. In previous reports, pseudo-Wellens syndrome most commonly resulted from recreational drug use or unidentified etiologies. We present a unique case of pseudo-Wellens syndrome due to sepsis-induced cardiomyopathy and a review of the literature. CASE PRESENTATION: A 62-year-old Caucasian woman was admitted for sepsis from left foot cellulitis. Laboratory data were notable for elevated lactate of 2.5 mmol/L and evidence of acute kidney injury. She developed chest pain on the third day of hospitalization. ECG showed symmetric T-wave inversion in leads V1-V4. Serial troponin I levels were within normal limits. Chest imaging showed no pulmonary embolism. Echocardiogram showed ejection fraction of 25%, left ventricular diastolic diameter of 4.6 cm, and multiple segmental wall motion abnormalities. Cardiac catheterization showed patent coronary arteries. The hospital course was complicated by transient sinus bradycardia and hypotension. She was hospitalized for a total of 17 days. ECG prior to discharge showed resolution of T-wave changes. CONCLUSION: Pseudo-Wellens syndrome may result from myocardial ischemia due to vasospasm or myocardial edema from external insults. In our case, we suspect sepsis-related cytokine production resulting in cardiomyopathy and pseudo-Wellens syndrome. The clinical manifestations were indistinguishable between Wellens and pseudo-Wellens syndrome. Physicians should include the diagnosis of pseudo-Wellens syndrome when considering the presence of LAD coronary artery occlusion given risk stratifications.

publication date

  • April 6, 2021

Research

keywords

  • Cardiomyopathies
  • Sepsis

Identity

PubMed Central ID

  • PMC8022430

Scopus Document Identifier

  • 85103921972

Digital Object Identifier (DOI)

  • 10.1056/NEJMoa1406761

PubMed ID

  • 33820566

Additional Document Info

volume

  • 15

issue

  • 1