A case series of extraneural metastatic glioblastoma at Memorial Sloan Kettering Cancer Center.
Overview
abstract
BACKGROUND: Extraneural metastasis of glioma is a rare event, often occurring in patients with advanced disease. Genomic alterations associated with extraneural glioma metastasis remain incompletely understood. METHODS: Ten patients at Memorial Sloan Kettering Cancer Center diagnosed with extraneural metastases of glioblastoma (9 patients) and gliosarcoma (1 patient) from 2003 to 2018 were included in our analysis. Patient characteristics, clinical course, and genomic alterations were evaluated. RESULTS: Patient age at diagnosis ranged from 14 to 73, with 7 men and 3 women in this group. The median overall survival from initial diagnosis and from diagnosis of extraneural metastasis was 19.6 months (range 11.2 to 57.5 months) and 5 months (range 1 to 16.1 months), respectively. The most common site of extraneural metastasis was bone, with other sites being lymph nodes, dura, liver, lung, and soft tissues. All patients received surgical resection and radiation, and 9 patients received temozolomide, with subsequent chemotherapy appropriate for individual cases. 1 patient had an Ommaya and then ventriculoperitoneal shunt placed, and 1 patient underwent craniectomy for cerebral edema associated with a brain abscess at the initial site of resection. Genomic analysis of primary tumors and metastatic sites revealed shared and private mutations with a preponderance of tumor suppressor gene alterations, illustrating clonal evolution in extraneural metastases. CONCLUSIONS: Several risk factors emerged for extraneural metastasis of glioblastoma and gliosarcoma, including sarcomatous dedifferentiation, disruption of normal anatomic barriers during surgical resection, and tumor suppressor gene alterations. Next steps with this work include validation of these genomic markers of glioblastoma metastases in larger patient populations and the development of preclinical models. This work will lead to a better understanding of the molecular mechanisms of metastasis to develop targeted treatments for these patients.