Regulation of differentiation in normal and transformed erythroid cells. Review uri icon

Overview

abstract

  • Studies are described employing two erythropoietic systems to elucidate regulatory mechanisms that control both normal erythropoiesis and erythroid differentiation of transformed hemopoietic precursors. Evidence is provided suggesting that normal erythroid cell precursors require erythropoietin as a growth factor that regulates the number of precursors capable of differentiating. Murine erythroleukemia cells proliferate without need of erythropoietin; they show a variable, generally low, rate of spontaneous differentiation and a brisk rate of erythropoiesis in response to a variety of chemical agents. Present studies suggest that these chemical inducers initiate a series of events including cell surface related changes, alterations in cell cycle kinetics, and modifications of chromatin and DNA structure which result in the irreversible commitment of these leukemia cells to erythroid differentiation and the synthesis of red-cell-specific products.

publication date

  • January 1, 1978

Research

keywords

  • Cell Transformation, Neoplastic
  • Erythropoiesis

Identity

Scopus Document Identifier

  • 0017813910

Digital Object Identifier (DOI)

  • 10.1007/BF02618182

PubMed ID

  • 342391

Additional Document Info

volume

  • 14

issue

  • 1