Genetically predicted serum vitamin D and COVID-19: a Mendelian randomisation study.
Academic Article
Overview
abstract
OBJECTIVES: To investigate causality of the association of serum vitamin D with the risk and severity of COVID-19 infection. DESIGN: Two-sample Mendelian randomisation study. SETTING: Summary data from genome-wide analyses in the population-based UK Biobank and SUNLIGHT Consortium, applied to meta-analysed results of genome-wide analyses in the COVID-19 Host Genetics Initiative. PARTICIPANTS: 17 965 COVID-19 cases including 11 085 laboratory or physician-confirmed cases, 7885 hospitalised cases and 4336 severe respiratory cases, and 1 370 547 controls, primarily of European ancestry. EXPOSURES: Genetically predicted variation in serum vitamin D status, instrumented by genome-wide significant single nucleotide polymorphisms (SNPs) associated with serum vitamin D or risk of vitamin D deficiency/insufficiency. MAIN OUTCOME MEASURES: Susceptibility to and severity of COVID-19 infection, including severe respiratory infection and hospitalisation. RESULTS: Mendelian randomisation analysis, sufficiently powered to detect effects comparable to those seen in observational studies, provided little to no evidence for an effect of genetically predicted serum vitamin D on susceptibility to or severity of COVID-19 infection. Using SNPs in loci related to vitamin D metabolism as genetic instruments for serum vitamin D concentrations, the OR per SD higher serum vitamin D was 1.04 (95% CI 0.92 to 1.18) for any COVID-19 infection versus population controls, 1.05 (0.84 to 1.31) for hospitalised COVID-19 versus population controls, 0.96 (0.64 to 1.43) for severe respiratory COVID-19 versus population controls, 1.15 (0.99 to 1.35) for COVID-19 positive versus COVID-19 negative and 1.44 (0.75 to 2.78) for hospitalised COVID-19 versus non-hospitalised COVID-19. Results were similar in analyses using SNPs with genome-wide significant associations with serum vitamin D (ie, including SNPs in loci with no known relationship to vitamin D metabolism) and in analyses using SNPs with genome-wide significant associations with risk of vitamin D deficiency or insufficiency. CONCLUSIONS: These findings suggest that genetically predicted differences in long-term vitamin D nutritional status do not causally affect susceptibility to and severity of COVID-19 infection, and that associations observed in previous studies may have been driven by confounding. These results do not exclude the possibility of low-magnitude causal effects or causal effects of acute responses to therapeutic doses of vitamin D.