Patient-specific effects on sonication heating efficiency during magnetic resonance-guided focused ultrasound thalamotomy.
Academic Article
Overview
abstract
PURPOSE: During magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy for refractory tremor, high temperatures must be achieved and sustained for tissue necrosis. We assessed the impact of both patient-specific as well as procedure-related factors on the efficiency of acoustic energy transfer, or heating efficiency (HE). METHODS: Retrospective analysis of 92 consecutive patients (857 sonications) with essential tremor or tremor-dominant Parkinson's disease treated at a single institution. Temperature elevations at the target were measured for each sonication with MR thermometry. HE of each sonication was defined as the ratio of peak temperature elevation and the delivered energy. HE was analyzed with respect to patient skull features (area, thickness, skull density ratio [SDR]), computed from CT scans, as well as demographic and clinical variables (age, sex, diagnosis, and duration of symptoms). RESULTS: ≥ CONCLUSIONS: SDR is predictive of sonication HE, and determines patient-specific limits on the magnitude of temperature elevation that can be achieved with current devices. These data inform strategies for predictable lesioning in MRgFUS thalamotomy.