Hyperosmotic Stress Induces a Specific Pattern for Stress Granule Formation in Human-Induced Pluripotent Stem Cells. Academic Article uri icon

Overview

abstract

  • Stress granules (SGs) are assemblies of selective messenger RNAs (mRNAs), translation factors, and RNA-binding proteins in small untranslated messenger ribonucleoprotein (mRNP) complexes in the cytoplasm. Evidence indicates that different types of cells have shown different mechanisms to respond to stress and the formation of SGs. In the present work, we investigated how human-induced pluripotent stem cells (hiPSCs/IMR90-1) overcome hyperosmotic stress compared to a cell line that does not harbor pluripotent characteristics (SH-SY5Y cell line). Gradient concentrations of NaCl showed a different pattern of SG formation between hiPSCs/IMR90-1 and the nonpluripotent cell line SH-SY5Y. Other pluripotent stem cell lines (hiPSCs/CRTD5 and hESCs/H9 (human embryonic stem cell line)) as well as nonpluripotent cell lines (BHK-21 and MCF-7) were used to confirm this phenomenon. Moreover, the formation of hyperosmotic SGs in hiPSCs/IMR90-1 was independent of eIF2α phosphorylation and was associated with low apoptosis levels. In addition, a comprehensive proteomics analysis was performed to identify proteins involved in regulating this specific pattern of hyperosmotic SG formation in hiPSCs/IMR90-1. We found possible implications of microtubule organization on the response to hyperosmotic stress in hiPSCs/IMR90-1. We have also unveiled a reduced expression of tubulin that may protect cells against hyperosmolarity stress while inhibiting SG formation without affecting stem cell self-renewal and pluripotency. Our observations may provide a possible cellular mechanism to better understand SG dynamics in pluripotent stem cells.

publication date

  • October 15, 2021

Identity

PubMed Central ID

  • PMC8538399

Scopus Document Identifier

  • 84907321563

Digital Object Identifier (DOI)

  • 10.2174/1574888X09666140616130217

PubMed ID

  • 34697543

Additional Document Info

volume

  • 2021