Highly portable quantitative screening test for prostate-specific antigen at point of care. Academic Article uri icon

Overview

abstract

  • Prostate cancer (PCa) is the second most diagnosed cancer among men. Targeted PCa screening may decrease PCa-specific mortality. Prostate-specific antigen (PSA) is the most reliable and widely accepted tumor biomarker for screening and monitoring PCa status. However, in many settings, quantification of serum PSA requires access to centralized laboratories. In this study, we describe a proof-of-concept rapid test combined with a highly portable Cube reader for quantification of total PSA from a drop of serum within 20 min. We demonstrated the application of gold nanoshells as a label for lateral flow assay with significant increase in the measured colorimetric signal intensity to achieve five times lower detection limit when compared to the traditionally used 40 nm gold nanosphere labels, without a need for any additional signal amplification steps. We first optimized and evaluated the performance of the assay with commercially available total PSA calibrators. For initial validation with commercially available ACCESS Hybritech PSA calibrator, a detection range of 0.5-150 ng/mL was achieved. We compared the performance of our total PSA test with IMMULITE analyzer for quantification of total PSA in archived human serum samples. On preliminary testing with archived serums samples and comparison with IMMULITE total PSA assay, a correlation of 0.95 (p < .0001) was observed. The highly portable quantitative screening test for PSA described in this study has the potential to make PCa screening more accessible where diagnostic labs and automated immunoassay systems are not available, to reduce therapeutic turnaround time, to streamline clinical care, and to direct patient care for both initial screening and for post-treatment monitoring of patients.

publication date

  • November 14, 2021

Identity

PubMed Central ID

  • PMC8789004

Scopus Document Identifier

  • 85022067693

Digital Object Identifier (DOI)

  • 10.1038/s41598-017-04924-x

PubMed ID

  • 35083431

Additional Document Info

volume

  • 3