Quantitative assessment of circulating tumor cells in cerebrospinal fluid as a clinical tool to predict survival in leptomeningeal metastases. Academic Article uri icon

Overview

abstract

  • PURPOSE: Circulating tumor cells in cerebrospinal fluid are a quantitative diagnostic tool for leptomeningeal metastases from solid tumors, but their prognostic significance is unclear. Our objective was to evaluate CSF-CTC quantification in predicting outcomes in LM. METHODS: This is a single institution retrospective study of patients with solid tumors who underwent CSF-CTC quantification using the CellSearch® platform between 04/2016 and 06/2019. Information on neuroaxis imaging, CSF results, and survival was collected. LM was diagnosed by MRI and/or CSF cytology. Survival analyses were performed using multivariable Cox proportional hazards modeling, and CSF-CTC splits associated with survival were identified through recursive partitioning analysis. RESULTS: Out of 290 patients with CNS metastases, we identified a cohort of 101 patients with newly diagnosed LM. In this group, CSF-CTC count (median 200 CTCs/3 ml) predicted survival continuously (HR = 1.005, 95% CI: 1.002-1.009, p = 0.0027), and the risk of mortality doubled (HR = 2.84, 95% CI: 1.45-5.56, p = 0.0023) at the optimal cutoff of ≥ 61 CSF-CTCs/3 ml. Neuroimaging findings of LM (assessed by 3 independent neuroradiologists) were associated with a higher CSF-CTC count (median CSF-CTCs range 1.5-4 for patients without radiographic LM vs 200 for patients with radiographic LM, p < 0.001), but did not predict survival. CONCLUSION: Our data shows that CSF-CTCs quantification predicts survival in newly diagnosed LM, and outperforms neuroimaging. CSF-CTC analysis can be used as a prognostic tool in patients with LM and provides quantitative assessment of disease burden in the CNS compartment.

publication date

  • February 3, 2022

Research

keywords

  • Meningeal Carcinomatosis
  • Neoplastic Cells, Circulating

Identity

PubMed Central ID

  • PMC9119011

Scopus Document Identifier

  • 85124235511

Digital Object Identifier (DOI)

  • 10.1093/neuonc/noz012

PubMed ID

  • 35113288

Additional Document Info

volume

  • 157

issue

  • 1