Catalytic defluorinative ketyl-olefin coupling by halogen-atom transfer. Academic Article uri icon

Overview

abstract

  • Ketyl-olefin coupling reactions stand as one of the fundamental chemical transformations in synthetic chemistry and have been widely employed in the generation of complex molecular architectures and natural product synthesis. However, catalytic ketyl-olefin coupling, until the recent development of photoredox chemistry and electrosynthesis through single-electron transfer mechanisms, has remained largely undeveloped. Herein, we describe a new approach to achieve catalytic ketyl-olefin coupling reactions by a halogen-atom transfer mechanism, which provides innovative and efficient access to various gem-difluorohomoallylic alcohols under mild conditions with broad substrate scope. Preliminary mechanistic experimental and computational studies demonstrate that this radical-to-polar crossover transformation could be achieved by sequentially orchestrated Lewis acid activation, halogen-atom transfer, radical addition, single-electron reduction and β-fluoro elimination.

publication date

  • June 10, 2022

Identity

PubMed Central ID

  • PMC9258324

Scopus Document Identifier

  • 85064847267

Digital Object Identifier (DOI)

  • 10.1039/C9CC01047E

PubMed ID

  • 35865891

Additional Document Info

volume

  • 13

issue

  • 26