In vivo tumor immune microenvironment phenotypes correlate with inflammation and vasculature to predict immunotherapy response. Academic Article uri icon

Overview

abstract

  • Response to immunotherapies can be variable and unpredictable. Pathology-based phenotyping of tumors into 'hot' and 'cold' is static, relying solely on T-cell infiltration in single-time single-site biopsies, resulting in suboptimal treatment response prediction. Dynamic vascular events (tumor angiogenesis, leukocyte trafficking) within tumor immune microenvironment (TiME) also influence anti-tumor immunity and treatment response. Here, we report dynamic cellular-level TiME phenotyping in vivo that combines inflammation profiles with vascular features through non-invasive reflectance confocal microscopic imaging. In skin cancer patients, we demonstrate three main TiME phenotypes that correlate with gene and protein expression, and response to toll-like receptor agonist immune-therapy. Notably, phenotypes with high inflammation associate with immunostimulatory signatures and those with high vasculature with angiogenic and endothelial anergy signatures. Moreover, phenotypes with high inflammation and low vasculature demonstrate the best treatment response. This non-invasive in vivo phenotyping approach integrating dynamic vasculature with inflammation serves as a reliable predictor of response to topical immune-therapy in patients.

authors

publication date

  • September 9, 2022

Research

keywords

  • Immunotherapy
  • Tumor Microenvironment

Identity

PubMed Central ID

  • PMC9463451

Scopus Document Identifier

  • 85138128193

Digital Object Identifier (DOI)

  • 10.1016/j.ymeth.2016.09.016

PubMed ID

  • 36085288

Additional Document Info

volume

  • 13

issue

  • 1