Dietary long-chain omega 3 fatty acids modify sphingolipid metabolism to facilitate airway hyperreactivity. Academic Article uri icon

Overview

abstract

  • Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are essential nutrients that can affect inflammatory responses. While n-3 PUFAs are generally considered beneficial for cardiovascular disease and obesity, the effects on asthma, the most common inflammatory lung disease are unclear. While prenatal dietary n-3 PUFAs decrease the risk for childhood wheezing, postnatal dietary n-3 PUFAs can worsen allergic airway inflammation. Sphingolipid metabolism is also affected by dietary n-3 PUFAs. Decreased sphingolipid synthesis leads to airway hyperreactivity, besides inflammation, a cardinal feature of asthma, and common genetic asthma risk alleles lead to lower sphingolipid synthesis. We investigated the effect of dietary n-3 PUFAs on sphingolipid metabolism and airway reactivity. Comparing a fish-oil diet with a high n-3 PUFA content (FO) to an isocaloric coconut oil-enriched diet (CO), we found an n-3 PUFA-dependent effect on increased airway reactivity, that was not accompanied by inflammation. Lung and whole blood content of dihydroceramides, ceramides, sphingomyelins, and glucosylceramides were lower in mice fed the n-3 PUFA enriched diet consistent with lower sphingolipid synthesis. In contrast, phosphorylated long chain bases such as sphingosine 1-phosphate were increased. These findings suggest that dietary n-3 PUFAs affect pulmonary sphingolipid composition to favor innate airway hyperreactivity, independent of inflammation, and point to an important role of n-3 PUFAs in sphingolipid metabolism.

publication date

  • November 17, 2022

Research

keywords

  • Asthma
  • Fatty Acids, Omega-3

Identity

PubMed Central ID

  • PMC9672127

Scopus Document Identifier

  • 85142152794

Digital Object Identifier (DOI)

  • 10.1038/s41598-022-21083-w

PubMed ID

  • 36396956

Additional Document Info

volume

  • 12

issue

  • 1