Correlation between aortic valve protein levels and vector flow mapping of wall shear stress and oscillatory shear index in patients supported with continuous-flow left ventricular assist devices. Academic Article uri icon

Overview

abstract

  • BACKGROUND: Continuous-flow left ventricular assist devices commonly lead to aortic regurgitation, which results in decreased pump efficiency and worsening heart failure. We hypothesized that non-physiological wall shear stress and oscillatory shear index alter the abundance of structural proteins in aortic valves of left ventricular assist device (LVAD) patients. METHODS: Doppler images of aortic valves of patients undergoing heart transplants were obtained. Eight patients had been supported with LVADs, whereas 10 were not. Aortic valve tissue was collected and protein levels were analyzed using mass spectrometry. Echocardiographic images were analyzed and wall shear stress and oscillatory shear index were calculated. The relationship between normalized levels of individual proteins and in vivo echocardiographic measurements was evaluated. RESULTS: Of the 57 proteins of interest, there was a strong negative correlation between levels of 15 proteins and the wall shear stress (R < -0.500, p ≤ 0.05), and a moderate negative correlation between 16 proteins and wall shear stress (R -0.500 to -0.300, p ≤ 0.05). Gene ontology analysis demonstrated clusters of proteins involved in cellular structure. Proteins negatively correlated with WSS included those with cytoskeletal, actin/myosin, cell-cell junction and extracellular functions. C: In aortic valve tissue, 31 proteins were identified involved in cellular structure and extracellular junctions with a negative correlation between their levels and wall shear stress. These findings suggest an association between the forces acting on the aortic valve (AV) and leaflet protein abundance, and may form a mechanical basis for the increased risk of aortic leaflet degeneration in LVAD patients.

publication date

  • October 1, 2022

Research

keywords

  • Aortic Valve Insufficiency
  • Heart Transplantation
  • Heart-Assist Devices

Identity

Scopus Document Identifier

  • 85142171712

Digital Object Identifier (DOI)

  • 10.1016/j.healun.2022.09.017

PubMed ID

  • 36400676

Additional Document Info

volume

  • 42

issue

  • 1