Cell interaction with the extracellular matrices produced by endothelial cells and fibroblasts. Academic Article uri icon

Overview

abstract

  • The extracellular matrices (ECM) produced by cultured bovine corneal endothelial cells and chick embryo fibroblasts were compared for their induction of cell attachment, proliferation and differentiation. The corneal endothelial ECM (cECM) induced a comparable and rapid attachment and flattening of both human Ewing's sarcoma and colon carcinoma cells which utilize fibronectin and laminin as adhesive glycoproteins, respectively. In contrast, the ECM produced by fibroblasts (fECM) readily supported the attachment and flattening of Ewing's sarcoma cells but had only a small effect on the carcinoma cells. Vascular endothelial cells were stimulated to proliferate by both types of matrices, but to a lesser extent by the fECM. In contrast, the formation of a closely apposed, non-overlapping and contact-inhibited endothelial cell monolayer was only dictated by the cECM. Vascular endothelial cells cultured on fECM grew on top of each other and incorporated [3H]thymidine even late at confluency. Neurite outgrowth (ciliary ganglion cells) and network formation (adult rat oligodendrocytes) were promoted by both types of matrices but in a more consistent manner with the cECM. It is likely that the small amounts of laminin deposited by chick embryo fibroblasts into their ECM are responsible for its efficient induction of neurite outgrowth and for the limited degree of carcinoma cell attachment and flattening. It is thus demonstrated that differences in chemical composition and supramolecular arrangement between cECM and fECM result not only in differences in the attachment, spreading and proliferative responses of cells but also in the expression of their characteristic morphological appearance and differentiated functions.

publication date

  • June 1, 1985

Research

keywords

  • Cell Communication
  • Cornea
  • Extracellular Matrix
  • Fibroblasts

Identity

Scopus Document Identifier

  • 0021845040

Digital Object Identifier (DOI)

  • 10.1016/0014-4827(85)90469-0

PubMed ID

  • 3891387

Additional Document Info

volume

  • 158

issue

  • 2