Invertase beta-galactosidase hybrid proteins fail to be transported from the endoplasmic reticulum in Saccharomyces cerevisiae. Academic Article uri icon

Overview

abstract

  • The yeast SUC2 gene codes for the secreted enzyme invertase. A series of 16 different-sized gene fusions have been constructed between this yeast gene and the Escherichia coli lacZ gene, which codes for the cytoplasmic enzyme beta-galactosidase. Various amounts of SUC2 NH2-terminal coding sequence have been fused in frame to a constant COOH-terminal coding segment of the lacZ gene, resulting in the synthesis of hybrid invertase-beta-galactosidase proteins in Saccharomyces cerevisiae. The hybrid proteins exhibit beta-galactosidase activity, and they are recognized specifically by antisera directed against either invertase or beta-galactosidase. Expression of beta-galactosidase activity is regulated in a manner similar to that observed for invertase activity expressed from a wild-type SUC2 gene: repressed in high-glucose medium and derepressed in low-glucose medium. Unlike wild-type invertase, however, the invertase-beta-galactosidase hybrid proteins are not secreted. Rather, they appear to remain trapped at a very early stage of secretory protein transit: insertion into the endoplasmic reticulum (ER). The hybrid proteins appear only to have undergone core glycosylation, an ER process, and do not receive the additional glycosyl modifications that take place in the Golgi complex. Even those hybrid proteins containing only a short segment of invertase sequences at the NH2 terminus are glycosylated, suggesting that no extensive folding of the invertase polypeptide is required before initiation of transmembrane transfer. beta-Galactosidase activity expressed by the SUC2-lacZ gene fusions cofractionates on Percoll density gradients with ER marker enzymes and not with other organelles. In addition, the hybrid proteins are not accessible to cell-surface labeling by 125I. Accumulation of the invertase-beta-galactosidase hybrid proteins within the ER does not appear to confer a growth-defective phenotype to yeast cells. In this location, however, the hybrid proteins and the beta-galactosidase activity they exhibit could provide a useful biochemical tag for yeast ER membranes.

publication date

  • November 1, 1984

Research

keywords

  • Endoplasmic Reticulum
  • Proteins
  • Saccharomyces cerevisiae

Identity

PubMed Central ID

  • PMC369064

Scopus Document Identifier

  • 0021739874

Digital Object Identifier (DOI)

  • 10.1128/mcb.4.11.2347-2355.1984

PubMed ID

  • 6440005

Additional Document Info

volume

  • 4

issue

  • 11