Regulation of new DNA synthesis in mammalian cells by cyclosporine. Demonstration of a transforming growth factor beta-dependent mechanism of inhibition of cell growth.
Academic Article
Overview
abstract
Immunosuppressants such as cyclosporine are considered to constrain cell growth by preventing the production of growth stimulatory cytokines (e.g., interleukin-2). The possibility exists, however, that CsA and other immunosuppressants might restrain cell growth by promoting the production of growth-inhibitory cytokines. We have explored herein the hypothesis that CsA stimulates the production of transforming growth factor-beta (TGF-beta), and restrains new DNA synthesis in mammalian cells via a TGF-beta-dependent mechanism. To investigate this new postulate independently of an IL-2-dependent mechanism, we utilized, as probes, two mammalian cell lines, distinguished by their sensitivity to growth inhibition by TGF-beta and resistance to IL-2: CCL-64 mink lung epithelial cells (CCL-64 cells) and A-549 human adenocarcinoma cells (A-549 cells). Our experimental approach revealed the following: (A) CsA and not cyclosporine H, an inactive analogue of CsA, mediates growth inhibition of TGF-beta-sensitive cells, CCL-64 cells, and A-549 cells; (B) CsA stimulates these mammalian cells to secrete TGF-beta; and (C) TGF-beta induced by CsA is biologically active in inducing cell growth inhibition (demonstrated by the reversal of CsA-associated inhibition with anti-TGF-beta monoclonal antibodies). Our observations suggest that CsA can regulate cell growth via a TGF-beta-dependent mechanism. Since the multifunctional cytokine TGF-beta can enhance extracellular matrix accumulation as well as augment endothelin production, our findings also advance a mechanism that links, via TGF-beta, the beneficial (immunosuppression) and the harmful (fibrosis, hypertension) consequences of CsA usage.