Kappa opioid receptor-like immunoreactivity in guinea pig brain: ultrastructural localization in presynaptic terminals in hippocampal formation.
Academic Article
Overview
abstract
Physiological and pharmacological studies have suggested that kappa opioid receptors (KORs) may be located presynaptically in the guinea pig hippocampal formation. In the present study, KOR-like immunoreactivity (-LI) was examined by using a rabbit antibody raised against a synthetic peptide from the carboxyl terminus of a cloned rat kappa receptor (KT). The specificity of affinity-purified KT antibody was confirmed by Western blotting, enzyme-linked immunosorbent assay, immunolabeling of KORs expressed in Xenopus oocytes, and immunocytochemical preadsorption controls. Specificity also was demonstrated by the light microscopic distribution of KT-LI in sections through the forebrain and the pons, which was largely consistent with the distribution of KORs previously reported, and resembled that of immunoreactivity for dynorphin B, an endogenous ligand for KORs. Detailed analysis of the hippocampal formation revealed that KT-LI was located predominantly in thin processes in the granule cell and inner molecular layers of the dentate gyrus. A few KT-labeled processes were also present in stratum lacunosum-moleculare of the CA1 region and all layers of the CA3 region of the hippocampus. By electron microscopy, KT-LI was restricted to unmyelinated axons and axon terminals, and was associated with plasma membranes, large dense-core vesicles, and cytoplasmic surfaces of small vesicles. In the dentate gyrus, immunolabeled terminals formed asymmetric synapses with granule cell perikarya and large unlabeled dendrites. In the CA3 region of hippocampus, KT-LI was present in small unmyelinated axons. The results of this study 1) demonstrate the specificity of the KT antibody, 2) show that the distribution of KT labeling corresponds well with previous KOR and dynorphin localization in many regions, and 3) provide ultrastructural evidence that KORs are located presynaptically in the guinea pig hippocampal formation.