Prevention of hepatic tumor metastases in rats with herpes viral vaccines and gamma-interferon. Academic Article uri icon

Overview

abstract

  • Previous studies showed that gammaIFN decreases metastatic hepatic tumor growth by stimulating Kupffer cells (KC). The present studies examine whether lymphocyte stimulation via cells engineered to secrete GM-CSF or IL-2 decreases hepatic tumor growth, and whether stimulation of both macrophages and lymphocytes is more effective than either individually. Rats were immunized with irradiated hepatoma cells transduced by herpes viral amplicon vectors containing the genes for GM-CSF, IL-2 or LacZ. On day 18, half of each group was treated with 5 x 10(4) U gammaIFN, or saline intraperitoneally for 3 d. On day 21, all rats received 5 x 10(5) hepatoma cells intrasplenically. On day 41, rats were killed and tumor nodules were counted. Separate rats underwent splenocyte and KC harvest for assessment of lymphocyte- and macrophage-mediated tumor cell kill in vitro. GM-CSF or IL-2 vaccines or gammaIFN decreased tumor nodules significantly (GM-CSF 13+/-4, IL-2 14+/-6 vs. control 75+/-24, P < 0.001). Combination therapy was more effective, and completely eliminated tumor in 4 of 12 IFN-GM-CSF and 8 of 11 IFN-IL-2 animals. Additional rats underwent partial hepatectomy, an immunosuppressive procedure known to accelerate the growth of hepatic tumor, following tumor challenge. Therapy was equally effective in this immunosuppressive setting. Vaccination is associated with enhancement of splenocyte-mediated tumoricidal activity, whereas the effect of gammaIFN is mediated by KC. GM-CSF and IL-2 vaccine therapy and pretreatment with gammaIFN represent effective strategies in reducing hepatic tumor. Combination therapy targets both lymphocytes and macrophages, and is more effective in reducing tumor than either therapy alone.

publication date

  • February 15, 1997

Research

keywords

  • Interferon-gamma
  • Liver Neoplasms, Experimental
  • Simplexvirus
  • Viral Vaccines

Identity

PubMed Central ID

  • PMC507865

Scopus Document Identifier

  • 0031027506

Digital Object Identifier (DOI)

  • 10.1172/JCI119226

PubMed ID

  • 9045885

Additional Document Info

volume

  • 99

issue

  • 4