Vascular endothelial growth factor (VEGF) expression in human prostate cancer: in situ and in vitro expression of VEGF by human prostate cancer cells. Academic Article uri icon

Overview

abstract

  • PURPOSE: A growing body of literature supports the role of angiogenesis in the development and spread of a variety of human cancers including prostate cancer (Pca). Angiogenesis is controlled by chemical signals known as angiogenic factors (AF) however, little is known about angiogenesis factors in prostate cancer. We evaluated the in situ and in vitro expression of vascular endothelial growth factor (VEGF), a potent angiogenic factor, in archival prostate cancer specimens and prostate cancer cell cultures during unstimulated and cytokine stimulated conditions. METHODS: Ex-vivo studies involved immunohistochemical analysis for VEGF expression and distribution in 25 archival specimens including, prostate cancer, benign prostatic hyperplasia (BPH) and normal prostate tissue. In-vitro studies utilized prostate cancer cells (DU-145) grown in culture and stimulated with cytokines thought to induce VEGF (i.e. IL-1 alpha, IL-1 beta, TNF-alpha and TNF-beta). Cell culture supernatants were analyzed by ELISA for VEGF levels. RESULTS: Immunohistochemical studies demonstrated that in 20 of 25 specimens prostate cancers cells stained positively for VEGF. BPH and normal prostate cells displayed little staining for VEGF. DU-145 prostate cancer cells produced low levels of VEGF in unstimulated conditions. Induction of DU-145 cells with cytokines resulted in differential stimulation whereby TNF was a potent inducer of VEGF, and IL-1 produced lesser but statistically significant increases in VEGF expression. CONCLUSIONS: Our immunohistochemical results indicate that significant levels of VEGF are present in prostate cancer, but not in BPH or normal prostate cells in-vivo. In-vitro studies suggest that differential regulation of angiogenesis factor expression by IL-1 and TNF occurs in prostate cancer. Identifying the angiogenesis factors involved in prostate cancer growth and understanding their regulation will lead to the development of anti-angiogenic strategies useful for diagnostic studies and therapeutic interventions.

publication date

  • June 1, 1997

Research

keywords

  • Endothelial Growth Factors
  • Lymphokines
  • Prostatic Neoplasms

Identity

Scopus Document Identifier

  • 0030939698

PubMed ID

  • 9146665

Additional Document Info

volume

  • 157

issue

  • 6