Experimental immune-mediated damage of septal cholinergic neurons.
Academic Article
Overview
abstract
Degeneration of cholinergic neurons in the medial septum and the diagonal band of Broca is a frequent neuropathological feature of Alzheimer's disease. To determine whether an immune process can injure these basal forebrain cholinergic neurons, we serially immunized guinea pigs with septal cholinergic hybrid cells (SN-56). Following immunization, a relatively selective damage of septal cholinergic neurons, reduction in septal choline acetyltransferase (ChAT) activity and decrease in acetylcholine release in hippocampus were detected. Serum IgG from guinea pigs immunized with SN-56 cells and stereotactically injected into the medial septal region of rats produced a loss of ChAT activity in the medial septum, frontal cortex and hippocampus, together with impairment of learning and long term spatial memory. These data suggest that relatively selective damage to septal cholinergic neurons can be caused by an immune-mediated process in experimental animals.