Additive cytotoxicity of different monoclonal antibody-cobra venom factor conjugates for human neuroblastoma cells. Academic Article uri icon

Overview

abstract

  • Insufficient numbers of antigen molecules and heterogeneity of antigen expression on tumor cells are major factors limiting the immunotherapeutic potential of the few clinically useful monoclonal antibodies capable of mediating complement cytotoxicity and antibody-dependent cellular cytotoxicity. To overcome this limitation, we converted two non-cytotoxic monoclonal anti-neuroblastoma antibodies, designated 3E7 (IgG2b) and 8H9 (IgG1), and the non-cytotoxic F(ab')2 fragment of the cytotoxic monoclonal anti-GD2 antibody 3F8 (IgG3) into cytotoxic antibody conjugates by covalent attachment of cobra venom factor (CVF), a structural and functional homologue of the activated third component of complement. Competitive binding experiments confirmed the different specificities of the three antibodies. In the presence of human complement, all three antibody-CVF conjugates mediated selective complement-dependent lysis of human neuroblastoma cells. Consistent with the kinetics of the alternative pathway of complement, approximately seven hours incubation were required to reach maximum cytotoxicity of up to 25% for the 3E7-CVF conjugate, up to 60% for the 8H9-CVF conjugate, and up to 95% for the 3F8 F(ab')2-CVF conjugate. The different extent of maximal cytotoxic activity of the three conjugates was reflected by corresponding differences in the extent of binding of both unconjugated antibodies and the respective conjugates. Any combination of the three antibody-CVF conjugates caused an additive effect in complement-mediated lysis. Using a cocktail of all three conjugates, the extent of complement-mediated killing could be increased up to 100%. These data demonstrate that by coupling of CVF the relative large number of non-cytotoxic monoclonal anti-tumor antibodies of interesting specificity can be used to design cocktails of cytotoxic conjugates and, thereby, to overcome the problem of insufficient and heterogeneous antigen expression on tumor cells for immunotherapy.

publication date

  • November 1, 1997

Research

keywords

  • Elapid Venoms
  • Immunotoxins
  • Neuroblastoma

Identity

Scopus Document Identifier

  • 0030716387

Digital Object Identifier (DOI)

  • 10.1016/s0171-2985(97)80078-2

PubMed ID

  • 9413745

Additional Document Info

volume

  • 197

issue

  • 5