h1- and h2-calponins are not essential for norepinephrine- or sodium fluoride-induced contraction of rat aortic smooth muscle.
Academic Article
Overview
abstract
To investigate the controversial issue concerning the role of calponin in smooth muscle contraction, this study examined the relationship between smooth muscle calponin and the contraction of aortic rings from different strains of rats: Sprague-Dawley (SD), Wistar, and Wistar Kyoto (WKY). Western blot analysis demonstrated that h1- and h2-calponins are present in aortic smooth muscle from adult SD rats but not Wistar or WKY rats. Nevertheless, h1-calponin is detectable in stomach from Wistar rats, although at a much lower level compared with that in the SD rat stomach. This suggests that a repressed expression of the gene, instead of a simple null mutation, may have caused its absence from the aortic smooth muscle. Despite the presence or absence of calponin, the aortic smooth muscles from the different strains of rats all develop contractions in response to the physiological agonist norepinephrine (NE) and following activation with the plasma membrane receptor-independent NaF induction. The data indicate that h1- and h2-calponins are not essential for NE- and NaF-induced contractions in aortic smooth muscle. The calponin-positive adult SD rat aorta was found to be more sensitive in contractile response to NE and NaF inductions compared with the calponin-negative rat aortae. This may imply a potential modulator function of calponin in the contraction of smooth muscle, whereas other contractile protein isoform differences between these rat strains may also play a role.