Beneficial effect of enteral glycine in intestinal ischemia/reperfusion injury. Academic Article uri icon

Overview

abstract

  • It has been shown in vitro that glycine can protect renal tubules and hepatocytes from hypoxic injury. Glycine also attenuates ischemic injury in transplanted livers. The present study investigated the effect of enteral glycine in a murine model of ischemia/reperfusion injury of the small intestine. Mice (n = 12 in each group) were randomized to receive two gastric gavages of either a 20% glycine (Gly) or 23% balanced amino acid (AA) solution with a 6-hour interval between each gavage. One hour after the second gavage, mice underwent superior mesenteric artery clamping for 20 minutes. The clamp was then released for reperfusion. Another group of mice (n = 8) underwent a sham operation and served as additional control animals. Six hours after ischemia/reperfusion, the mice were killed in order to assess the intestinal injury (intestinal protein content, mucosal disaccharidase activity, and intestinal histologic findings) and the systemic consequences (bacterial translocation, serum interleukin-6, and lung myeloperoxidase activity). A second set of mice (n = 55) underwent identical gavages and ischemia/reperfusion and they were followed for survival. Compared to AA, enteral glycine administered prior to intestinal ischemia/reperfusion injury significantly preserved mucosal indices and intestinal histology and decreased lung myeloperoxidase activity. Survival was also significantly increased in animals receiving glycine compared to AA control mice. These data suggest that enteral glycine supplementation may be beneficial in attenuating intestinal ischemia/reperfusion injury and its related systemic effects in this murine model.

publication date

  • January 1, 1997

Research

keywords

  • Glycine
  • Reperfusion Injury

Identity

Scopus Document Identifier

  • 0009648663

Digital Object Identifier (DOI)

  • 10.1007/s11605-006-0011-0

PubMed ID

  • 9834470

Additional Document Info

volume

  • 1

issue

  • 1