In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Academic Article uri icon

Overview

abstract

  • Neurogenesis persists in the adult mammalian hippocampus. To identify and isolate neuronal progenitor cells of the adult human hippocampus, we transfected ventricular zone-free dissociates of surgically-excised dentate gyrus with DNA encoding humanized green fluorescent protein (hGFP), placed under the control of either the nestin enhancer (E/nestin) or the Talpha1 tubulin promoter (P/Talpha1), two regulatory regions that direct transcription in neural progenitor cells. The resultant P/Talpha1:hGFP+ and E/nestin:enhanced (E)GFP+ cells expressed betaIII-tubulin or microtubule-associated protein-2; many incorporated bromodeoxyuridine, indicating their genesis in vitro. Using fluorescence-activated cell sorting, the E/nestin:EGFP+ and P/Talpha1:hGFP+ cells were isolated to near purity, and matured antigenically and physiologically as neurons. Thus, the adult human hippocampus contains mitotically competent neuronal progenitors that can be selectively extracted. The isolation of these cells may provide a cellular substrate for re-populating the damaged or degenerated adult hippocampus.

authors

  • Roy, Neeta S
  • Wang, Su
  • Jiang, Li
  • Kang, Jian
  • Benraiss, Abdellatif
  • Harrison-Restelli, Catherine
  • Fraser, R A
  • Couldwell, W T
  • Kawaguchi, Ayano
  • Okano, Hideyuki
  • Nedergaard, Maiken
  • Goldman, S A

publication date

  • March 1, 2000

Research

keywords

  • Dentate Gyrus
  • Hippocampus
  • Nerve Tissue Proteins
  • Neurons
  • Stem Cells
  • Transcription, Genetic
  • Tubulin

Identity

Scopus Document Identifier

  • 0034101536

Digital Object Identifier (DOI)

  • 10.1038/73119

PubMed ID

  • 10700228

Additional Document Info

volume

  • 6

issue

  • 3