Cannabinoid receptor-mediated inhibition of acetylcholine release from hippocampal and cortical synaptosomes. Academic Article uri icon

Overview

abstract

  • In previous studies cannabinoid agonists have been found to inhibit and cannabinoid antagonists to enhance electrically-evoked [(3)H]-acetycholine (ACh) release in hippocampal slices. The present study was undertaken to determine if similar cannabinoid effects could be observed in synaptosomes. [(3)H]-ACh release was evoked by two methods, both sensitive to presynaptic receptor effects. The first involved the addition of 1.3 mM calcium following perfusion with calcium-free Krebs and the second the addition of 11 mM potassium following perfusion with normal Krebs. In hippocampal synaptosomes the 1.3 mM calcium-evoked release and the high potassium-evoked [(3)H]-ACh release were inhibited by the cannabinoid agonist, WIN 55212-2, by 59 and 39%, respectively, and with an EC(50) of approximately 1 nM. WIN 55212-2 produced a similar, although less potent, inhibition of [(3)H]-ACh release in cortical synaptosomes. No inhibitory effect of WIN 55212-2 on [(3)H]-ACh release in striatal synaptosomes was observed, supporting previous data collected in this area with brain slices. The cannabinoid antagonist, SR 141716A, produced a robust enhancement of 1.3 mM calcium-evoked [(3)H]-ACh release in hippocampal synaptosomes (EC(50)<0.3 nM) but had no effect on potassium-evoked release or on [(3)H]-ACh release in the cortex or striatum. In conclusion our data demonstrates the inhibitory effects of WIN 55212-2 observed on ACh release in brain slices can be observed in hippocampal and cortex synaptosomes, suggesting a direct action of these compounds on the synaptic terminals. The SR 141716A-induced enhancement of ACh release can similarly be observed in hippocampal synaptosomes and is probably due to an inverse agonist action at constitutively active receptors.

publication date

  • October 1, 2000

Research

keywords

  • Acetylcholine
  • Cerebral Cortex
  • Hippocampus
  • Receptors, Drug
  • Synaptosomes

Identity

PubMed Central ID

  • PMC1572356

Scopus Document Identifier

  • 0033771946

Digital Object Identifier (DOI)

  • 10.1038/sj.bjp.0703599

PubMed ID

  • 11015319

Additional Document Info

volume

  • 131

issue

  • 3