Interpretation of the results of common principal components analyses. Academic Article uri icon

Overview

abstract

  • Common principal components (CPC) analysis is a new tool for the comparison of phenotypic and genetic variance-covariance matrices. CPC was developed as a method of data summarization, but frequently biologists would like to use the method to detect analogous patterns of trait correlation in multiple populations or species. To investigate the properties of CPC, we simulated data that reflect a set of causal factors. The CPC method performs as expected from a statistical point of view, but often gives results that are contrary to biological intuition. In general, CPC tends to underestimate the degree of structure that matrices share. Differences of trait variances and covariances due to a difference in a single causal factor in two otherwise identically structured datasets often cause CPC to declare the two datasets unrelated. Conversely, CPC could identify datasets as having the same structure when causal factors are different. Reordering of vectors before analysis can aid in the detection of patterns. We urge caution in the biological interpretation of CPC analysis results.

publication date

  • March 1, 2002

Research

keywords

  • Biological Evolution
  • Genetic Variation
  • Phenotype

Identity

Scopus Document Identifier

  • 0036221655

Digital Object Identifier (DOI)

  • 10.1111/j.0014-3820.2002.tb01356.x

PubMed ID

  • 11989675

Additional Document Info

volume

  • 56

issue

  • 3