Rapid fibroblast growth factor-induced increases in protein phosphorylation and ornithine decarboxylase activity: regulation by heparin and comparison to nerve growth factor-induced increases. Academic Article uri icon

Overview

abstract

  • Fibroblast growth factors (FGFs), like nerve growth factor (NGF), induce morphological differentiation of PC12 cells. This activity of FGF is regulated by glycosaminoglycans. To further understand the mechanisms of FGF and glycosaminoglycan actions in PC12 cells, we studied the regulation of protein phosphorylation and ornithine decarboxylase (ODC) activity by FGF in the presence and absence of heparin. As with NGF, aFGF and bFGF increased the incorporation of radioactive phosphate into the protein tyrosine hydroxylase (TH). The increase in TH phosphorylation was localized to the tryptic peptide, T3. Both T3 and T1 phosphorylations occur in response to NGF, but there was no evidence that aFGF or bFGF stimulated the phosphorylation of the T1 peptide. This result suggests differential regulation of second messenger systems by NGF and FGF in PC12 cells. Heparin, at a concentration that potentiated aFGF-induced neurite outgrowth 100-fold (100 micrograms/ml), did not alter the ability of aFGF to increase S6 phosphorylation or ODC activity. One milligram per milliliter of heparin, a concentration that inhibited bFGF-induced neurite outgrowth, also inhibited bFGF-induced increases in S6 phosphorylation and ODC activity. These observations suggest (i) that acidic and basic FGF activate a protein kinase, possibly protein kinase C, resulting in the phosphorylation of peptide T3 of TH; (ii) that the FGFs and NGF share some but not all second messenger systems; (iii) that heparin potentiates aFGF actions and inhibits bFGF actions in PC12 cells via distinct mechanisms; (iv) that heparin does not potentiate the neurite outgrowth promoting activity of aFGF by enhancing binding to its PC12 cell surface receptor; and (v) that heparin may coordinately regulate several activities of bFGF (induction of protein phosphorylation, ODC and neurite outgrowth) via a common mechanism, most likely by inhibiting the productive binding of bFGF to its PC12 cell surface receptor.

publication date

  • July 1, 1992

Research

keywords

  • Fibroblast Growth Factors
  • Ornithine Decarboxylase
  • Tyrosine 3-Monooxygenase

Identity

Scopus Document Identifier

  • 0026632463

Digital Object Identifier (DOI)

  • 10.1016/0014-4827(92)90359-g

PubMed ID

  • 1351851

Additional Document Info

volume

  • 201

issue

  • 1