A conserved telomerase motif within the catalytic domain of telomerase reverse transcriptase is specifically required for repeat addition processivity. Academic Article uri icon

Overview

abstract

  • Telomerase is a ribonucleoprotein reverse transcriptase responsible for the maintenance of one strand of the telomere terminal repeats. The catalytic protein subunit of the telomerase complex, known as TERT, possesses a reverse transcriptase (RT) domain that mediates nucleotide addition. The RT domain of TERT is distinguishable from retroviral and retrotransposon RTs in having a sizable insertion between conserved motifs A and B', within the so-called fingers domain. Sequence analysis revealed the existence of conserved residues in this region, named IFD (insertion in fingers domain). Mutations of some of the conserved residues in Saccharomyces cerevisiae TERT (Est2p) abolished telomerase function in vivo, testifying to their importance. Significant effects of the mutations on telomerase activity in vitro were observed, with most of the mutants exhibiting a uniform reduction in activity regardless of primer sequence. Remarkably, one mutant manifested a primer-specific defect, being selectively impaired in extending primers that form short hybrids with telomerase RNA. This mutant also accumulated products that correspond to one complete round of repeat synthesis, implying an inability to effect the repositioning of the DNA product relative to the RNA template that is necessary for multiple repeat addition. Our results suggest that the ability to stabilize short RNA-DNA hybrids is crucial for telomerase function in vivo and that this ability is mediated in part by a more elaborate fingers domain structure.

publication date

  • December 1, 2003

Research

keywords

  • Telomerase

Identity

PubMed Central ID

  • PMC262686

Scopus Document Identifier

  • 0242552586

Digital Object Identifier (DOI)

  • 10.1128/MCB.23.23.8440-8449.2003

PubMed ID

  • 14612390

Additional Document Info

volume

  • 23

issue

  • 23