Carbon monoxide promotes Fas/CD95-induced apoptosis in Jurkat cells. Academic Article uri icon

Overview

abstract

  • A properly functioning immune system is dependent on programmed cell death/apoptosis at virtually every stage of lymphocyte development and activity. Carbon monoxide (CO), an enzymatic product of heme oxyenase-1, has been shown to possess anti-apoptotic effects in a number of different model systems. The purpose of the present study was to expand on this knowledge to determine the role of CO in the well established model of Fas/CD95-induced apoptosis in Jurkat cells, and to determine the mechanism by which CO can modulate T-cell apoptosis. Exposure of Jurkat cells to CO resulted in augmentation in Fas/CD95-induced apoptosis, which correlated with CO-induced up-regulation of the pro-apoptotic protein FADD as well as activation of caspase-8, -9, and -3 while simultaneously down-regulating the anti-apoptotic protein BCL-2. These effects of CO were lost with overexpression of the small interfering RNA of FADD. CO, as demonstrated previously in endothelial cells, was also anti-apoptotic in Jurkat cells against tumor necrosis factor and etoposide. We further demonstrate that this pro-apoptotic effect of CO was independent of reactive oxygen species production and involved inhibition in Fas/CD95-induced activation of the pro-survival ERK MAPK. We conclude that in contrast to other studies showing the anti-apoptotic effects of CO, Fas/CD95-induced cell death in Jurkat cells is augmented by exposure to CO and that this occurs in part via inhibition in the activation of ERK MAPK. These data begin to elucidate specific differences with regard to the effects of CO and cell death pathways and provide important and valuable insight into potential mechanisms of action.

publication date

  • July 27, 2004

Research

keywords

  • Apoptosis
  • Carbon Monoxide
  • fas Receptor

Identity

Scopus Document Identifier

  • 7244227981

PubMed ID

  • 15280387

Additional Document Info

volume

  • 279

issue

  • 43