Matrix metalloproteinase (MMP)-1 and MMP-3 induce macrophage MMP-9: evidence for the role of TNF-alpha and cyclooxygenase-2.
Academic Article
Overview
abstract
Matrix metalloproteinase (MMP)-9 (gelatinase B) participates in a variety of diverse physiologic and pathologic processes. We recently characterized a cyclooxygenase-2 (COX-2)-->PGE(2)-->EP4 receptor axis that regulates macrophage MMP-9 expression. In the present studies, we determined whether MMPs, commonly found in inflamed and neoplastic tissues, regulate this prostanoid-EP receptor axis leading to enhanced MMP-9 expression. Results demonstrate that exposure of murine peritoneal macrophages and RAW264.7 macrophages to MMP-1 (collagenase-1) or MMP-3 (stromelysin-1) lead to a marked increase in COX-2 expression, PGE(2) secretion, and subsequent induction of MMP-9 expression. Proteinase-induced MMP-9 expression was blocked in macrophages preincubated with the selective COX-2 inhibitor celecoxib or transfected with COX-2 small interfering RNA (siRNA). Likewise, proteinase-induced MMP-9 was blocked in macrophages preincubated with the EP4 antagonist ONO-AE3-208 or transfected with EP4 siRNA. Exposure of macrophages to MMP-1 and MMP-3 triggered the rapid release of TNF-alpha, which was blocked by MMP inhibitors. Furthermore, both COX-2 and MMP-9 expression were inhibited in macrophages preincubated with anti-TNF-alpha IgG or transfected with TNF-alpha siRNA. Thus, proteinase-induced MMP-9 expression by macrophages is dependent on the release of TNF-alpha, induction of COX-2 expression, and PGE(2) engagement of EP4. The ability of MMP-1 and MMP-3 to regulate macrophage secretion of PGE(2) and expression of MMP-9 defines a nexus between MMPs and prostanoids that is likely to play a role in the pathogenesis of chronic inflammatory diseases and cancer. These data also suggest that this nexus is targetable utilizing anti-TNF-alpha therapies and/or selective EP4 antagonists.