At least 104 nucleotides are transposed from the 5' terminus of the avian sarcoma virus genome to the 5' termini of smaller viral mRNAs.
Academic Article
Overview
abstract
Cells producing avian sarcoma virus (ASV) contain at least three virus-specific mRNAs, two of which are encoded within the 3' half of the viral genome. Each of these viral RNAs can hybridize with single-stranded DNA(cDNA5') that is complementary to a sequence of 101 nucleotides found at the 5' terminus of the ASV genome, but not within the 3' half of the genome. We proposed previously (Weiss, Varmus and Bishop, 1977) that this nucleotide sequence may be transposed to the 5' termini of viral mRNAs during the genesis of these RNAs. We now substantiate this proposal by reporting the isolation and chemical characterization of the nucleotide sequences complementary to cDNA5' in the genome and mRNAs of the Prague B strain of ASV. We isolated the three identified classes of ASVmRNA (38, 28 and 21S) by molecular hybridization; each class of RNA contained a "capped" oligonucleotide identical to that found at the 5' terminus of the ASV genome. When hybridized with cDNA5', each class of RNA gave rise to RNAase-resistant duplex hybrids that probably encompassed the full extent of cDNA5'. The molar yields of duplex conformed approximately to the number of virus-specific RNA molecules in the initial samples; hence most if not all of the molecules of virus-specific RNA could give rise to the duplexes. The duplexes prepared from the various RNAs all contained the capped oligonucleotide found at the 5' terminus of the viral genome and had identical "fingerprints" when analyzed by two-dimensional fractionation following hydrolysis with RNAase T1. In contrast, RNA representing the 3' half of the ASV genome did not form hybrids with cDNA5'. We conclude that a sequence of more than 100 nucleotides is transposed from the 5' end of the ASV genome to the 5' termini of smaller viral RNAs during the genesis of these RNAs. Transposition of nucleotide sequences during the production of mRNA has now been described for three families of animal viruses and may be a common feature of mRNA biogenesis in eucaryotic cells. The mechanism of transposition, however, and the function of the transposed sequences are not known.