TLR9 and the NLRP3 inflammasome link acinar cell death with inflammation in acute pancreatitis. Academic Article uri icon

Overview

abstract

  • BACKGROUND & AIMS: Acute pancreatitis is characterized by early activation of intracellular proteases followed by acinar cell death and inflammation. Activation of damage-associated molecular pattern (DAMP) receptors and a cytosolic complex termed the inflammasome initiate forms of inflammation. In this study, we examined whether DAMP-receptors and the inflammasome provide the link between cell death and the initiation of inflammation in pancreatitis. METHODS: Acute pancreatitis was induced by caerulein stimulation in wild-type mice and mice deficient in components of the inflammasome (apoptosis-associated speck-like protein containing a caspase recruitment domain [ASC], NLRP3, caspase-1), Toll-like receptor 9 (TLR9), or the purinergic receptor P2X(7). Resident and infiltrating immune cell populations and pro-interleukin-1β expression were characterized in control and caerulein-treated adult murine pancreas. TLR9 expression was quantified in pancreatic cell populations. Additionally, wild-type mice were pretreated with a TLR9 antagonist before induction of acute pancreatitis by caerulein or retrograde bile duct infusion of taurolithocholic acid 3-sulfate. RESULTS: Caspase-1, ASC, and NLRP3 were required for inflammation in acute pancreatitis. Genetic deletion of Tlr9 reduced pancreatic edema, inflammation, and pro-IL-1β expression in pancreatitis. TLR9 was expressed in resident immune cells of the pancreas, which are predominantly macrophages. Pretreatment with the TLR9 antagonist IRS954 reduced pancreatic edema, inflammatory infiltrate, and apoptosis. Pretreatment with IRS954 reduced pancreatic necrosis and lung inflammation in taurolithocholic acid 3-sulfate-induced acute pancreatitis. CONCLUSIONS: Components of the inflammasome, ASC, caspase-1, and NLRP3, are required for the development of inflammation in acute pancreatitis. TLR9 and P2X(7) are important DAMP receptors upstream of inflammasome activation, and their antagonism could provide a new therapeutic strategy for treating acute pancreatitis.

publication date

  • March 24, 2011

Research

keywords

  • Carrier Proteins
  • Inflammasomes
  • Pancreas
  • Pancreatitis
  • Signal Transduction
  • Toll-Like Receptor 9

Identity

PubMed Central ID

  • PMC3129497

Scopus Document Identifier

  • 79959983521

Digital Object Identifier (DOI)

  • 10.1053/j.gastro.2011.03.041

PubMed ID

  • 21439959

Additional Document Info

volume

  • 141

issue

  • 1