Analysis of the physical state of cholesteryl esters in arterial-smooth-muscle-derived foam cells by differential scanning calorimetry. Academic Article uri icon

Overview

abstract

  • The physical state of cholesteryl esters (CE) in the arterial-smooth-muscle-derived foam cells may contribute to the documented reduction in CE hydrolysis. The physical state of CE may also provide a potential enhancing mechanism for increased CE accumulation. To explore these concepts, we therefore examined the influence of alterations in CE and triacylglycerol (TG) content and their fatty acid composition on the thermotropic behaviour of these lipids by differential scanning calorimetry (d.s.c.). After exposure to cationized LDL (cLDL) or after infection with herpes simplex virus type I (HSV), smooth-muscle cells accumulated significant amounts of CE. The CE/TG ratio was significantly higher in cells treated with cLDL compared with HSV infection. TG content was unaffected by either treatment. However, the fatty acid profile of both CE and TG was significantly different between treatment groups, with the polyunsaturated fatty acid/saturated fatty acid (PUFA/SFA) ratio being significantly higher in cLDL-treated cells than in HSV-infected cells. The d.s.c.-generated thermograms of intact cells revealed that neutral lipids of both treatment groups were in the isotropic-liquid state, similar to the state of lipids derived from 'fatty streak' types of atherosclerotic lesions. Differences in the thermograms between HSV-infected and cLDL-treated cells can be ascribed to differences in the CE content and the fatty acid composition of CE and TG (PUFA/SFA ratio). Polarizing optical microscopy revealed the presence of isotropic lipids in both groups. Biochemical and physicochemical data confirm the lysosomal localization of engorged CE, and indicate that the cellular isotropic CE in these foam cells are in a physical state which favours enzymic hydrolysis.

publication date

  • June 15, 1990

Research

keywords

  • Cholesterol Esters
  • Foam Cells
  • Macrophages
  • Muscle, Smooth, Vascular

Identity

PubMed Central ID

  • PMC1131495

Scopus Document Identifier

  • 0025374831

Digital Object Identifier (DOI)

  • 10.1042/bj2680693

PubMed ID

  • 2163619

Additional Document Info

volume

  • 268

issue

  • 3