Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cytotoxicity. Academic Article uri icon

Overview

abstract

  • When deprived of oxygen, Bacille Calmette-GuĂ©rin (BCG)-activated macrophages no longer lysed P388 lymphoma cells. Both H2O2 release and cytotoxicity by BCG-activated macrophages and by granulocytes triggered with phorbol myristate acetate (PMA) were markedly inhibited when the glucose concentration in the medium was reduced to 0.03 mM or less, or if glucose were replaced with galactose. Catalase abolished PMA-triggered cytotoxicity by both types of effector cells, whereas superoxide dismutase had no effect. Ferricytochrome C reduced the cytotoxicity of BCG-activated macrophages, an effect which was largely reversed by superoxide dismutase. 10 drugs, thought to quench singlet oxygen and/or scavenge hydroxyl radical, did not affect cytotoxicity in this system. Neither azide nor cyanide reduced cytolysis, but there was marked inhibition by lactoperoxidase and iodide. This suggested that cytotoxicity was not dependent upon myeloperoxidase, and that lactoperoxidase may have diverted H2O2 from the oxidation of target cells to oxidation of substances in serum. Mouse erythrocytes, although sensitive targets, interfered with the cytolysis of lymphoma cells, probably by competition for H2O2. Starch particles with covalently bound glucose oxidase resembled macrophages in their spatial relation to the target cells and in the flux of H2O2 they generated from their surface, but were not expected to produce any other potentially toxic products. Such particles lysed lymphoma cells, and the lysis was prevented by catalase. Neither arginase nor thymidine appeared to be involved in cytolysis by BCG-activated macrophages under the conditions used. These findings demonstrated that release of H2O2 was both necessary and sufficient for cytolysis by BCG-activated macrophages and by granulocytes when pharmacologically triggered.

publication date

  • January 1, 1979

Research

keywords

  • Granulocytes
  • Hydrogen Peroxide
  • Macrophages

Identity

PubMed Central ID

  • PMC2184732

Scopus Document Identifier

  • 0018343415

Digital Object Identifier (DOI)

  • 10.1084/jem.149.1.100

PubMed ID

  • 216763

Additional Document Info

volume

  • 149

issue

  • 1