Thiosuccinyl peptides as Sirt5-specific inhibitors.
Academic Article
Overview
abstract
Sirtuins, a class of enzymes known as nicotinamide adenine dinucleotide-dependent deacetylases, have been shown to regulate a variety of biological processes, including aging, transcription, and metabolism. Sirtuins are considered promising targets for treating several human diseases. There are seven sirtuins in humans (Sirt1-7). Small molecules that can target a particular human sirtuin are important for drug development and fundamental studies of sirtuin biology. Here we demonstrate that thiosuccinyl peptides are potent and selective Sirt5 inhibitors. The design of these inhibitors is based on our recent discovery that Sirt5 prefers to catalyze the hydrolysis of malonyl and succinyl groups, rather than an acetyl group, from lysine residues. Furthermore, among the seven human sirtuins, Sirt5 is the only one that has this unique acyl group preference. This study demonstrates that the different acyl group preferences of different sirtuins can be conveniently utilized to develop small molecules that selectively target different sirtuins.