Sodium channels as targets for volatile anesthetics. Academic Article uri icon

Overview

abstract

  • The molecular mechanisms of modern inhaled anesthetics are still poorly understood although they are widely used in clinical settings. Considerable evidence supports effects on membrane proteins including ligand- and voltage-gated ion channels of excitable cells. Na(+) channels are crucial to action potential initiation and propagation, and represent potential targets for volatile anesthetic effects on central nervous system depression. Inhibition of presynaptic Na(+) channels leads to reduced neurotransmitter release at the synapse and could therefore contribute to the mechanisms by which volatile anesthetics produce their characteristic end points: amnesia, unconsciousness, and immobility. Early studies on crayfish and squid giant axon showed inhibition of Na(+) currents by volatile anesthetics at high concentrations. Subsequent studies using native neuronal preparations and heterologous expression systems with various mammalian Na(+) channel isoforms implicated inhibition of presynaptic Na(+) channels in anesthetic actions at clinical concentrations. Volatile anesthetics reduce peak Na(+) current (I(Na)) and shift the voltage of half-maximal steady-state inactivation (h(∞)) toward more negative potentials, thus stabilizing the fast-inactivated state. Furthermore recovery from fast-inactivation is slowed, together with enhanced use-dependent block during pulse train protocols. These effects can depress presynaptic excitability, depolarization and Ca(2+) entry, and ultimately reduce transmitter release. This reduction in transmitter release is more potent for glutamatergic compared to GABAergic terminals. Involvement of Na(+) channel inhibition in mediating the immobility caused by volatile anesthetics has been demonstrated in animal studies, in which intrathecal infusion of the Na(+) channel blocker tetrodotoxin increases volatile anesthetic potency, whereas infusion of the Na(+) channels agonist veratridine reduces anesthetic potency. These studies indicate that inhibition of presynaptic Na(+) channels by volatile anesthetics is involved in mediating some of their effects.

publication date

  • March 30, 2012

Identity

PubMed Central ID

  • PMC3316150

Scopus Document Identifier

  • 51449094782

Digital Object Identifier (DOI)

  • 10.1213/ane.0b013e3181815fbc

PubMed ID

  • 22479247

Additional Document Info

volume

  • 3