Native α-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2. Academic Article uri icon

Overview

abstract

  • α-Synuclein is a presynaptic protein that is implicated in Parkinson's and other neurodegenerative diseases. Physiologically, native α-synuclein promotes presynaptic SNARE-complex assembly, but its molecular mechanism of action remains unknown. Here, we found that native α-synuclein promotes clustering of synaptic-vesicle mimics, using a single-vesicle optical microscopy system. This vesicle-clustering activity was observed for both recombinant and native α-synuclein purified from mouse brain. Clustering was dependent on specific interactions of native α-synuclein with both synaptobrevin-2/VAMP2 and anionic lipids. Out of the three familial Parkinson's disease-related point mutants of α-synuclein, only the lipid-binding deficient mutation A30P disrupted clustering, hinting at a possible loss of function phenotype for this mutant. α-Synuclein had little effect on Ca(2+)-triggered fusion in our reconstituted single-vesicle system, consistent with in vivo data. α-Synuclein may therefore lead to accumulation of synaptic vesicles at the active zone, providing a 'buffer' of synaptic vesicles, without affecting neurotransmitter release itself. DOI:http://dx.doi.org/10.7554/eLife.00592.001.

publication date

  • April 30, 2013

Research

keywords

  • Phospholipids
  • Synaptic Vesicles
  • Vesicle-Associated Membrane Protein 2
  • alpha-Synuclein

Identity

PubMed Central ID

  • PMC3639508

Scopus Document Identifier

  • 84879033702

Digital Object Identifier (DOI)

  • 10.1002/pro.630

PubMed ID

  • 23638301

Additional Document Info

volume

  • 2