Transient combination therapy targeting the immune synapse abrogates T cell responses and prolongs allograft survival in mice. Academic Article uri icon

Overview

abstract

  • T cells play a major role in allograft rejection, which occurs after T cell activation by the engagement of several functional molecules to form an immune synapse with alloantigen presenting cells. In this study, the immune synapse was targeted using mAbs directed to the TCR beta-chain (TCRβ) and lymphocyte function-associated antigen-1 (LFA1) to induce long-term allograft survival. Evaluation of antigen-specific T cell responses was performed by adoptively transferring CFSE labeled transgenic OT-II cells into wild-type mice and providing OVA peptide by intravenous injection. Graft survival studies were performed in mice by transplanting BALB/c ear skins onto the flanks of C57BL/6 recipients. The anti-TCRβ plus anti-LFA1 mAb combination (but not either mAb alone) abrogated antigen-specific T cell responses invitro and invivo. Transient combination therapy with these agents resulted in significantly prolonged skin allograft survival in mice (51±10 days; p<0.01) when compared to treatment with either anti-TCRβ mAb (24±5 days) or anti-LFA1 mAb (19±3 days) alone or no treatment (10±1 days). When lymphoid tissues from these mice were analyzed at different times post-transplant, only those receiving the combination of anti-TCRβ and anti-LFA1 mAbs demonstrated long-lasting reductions in total T cell numbers, cellular and humoral anti-donor responses, and expression of CD3 on the surface of T cells. These results demonstrate that transient anti-TCRβ and anti-LFA1 mAb combination therapy abrogates antigen-reactive T cell responses with long-lasting effects that significantly prolong allograft survival.

publication date

  • July 24, 2013

Research

keywords

  • Graft Survival
  • T-Lymphocytes

Identity

PubMed Central ID

  • PMC3722282

Scopus Document Identifier

  • 84880796698

Digital Object Identifier (DOI)

  • 10.1371/journal.pone.0069397

PubMed ID

  • 23894468

Additional Document Info

volume

  • 8

issue

  • 7